REGULATED PUSHDOWN AUTOMATA REVISITED

Lukáš Rychnovský
Doctoral Degree Programme (3), FIT BUT
E-mail: rychnov@fit.vutbr.cz
Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

Abstract

This paper demonstrates the alternative proof for the theorem of equivalence between regulated pushdown automata and recursive enumerable languages as shown in [Med-00].

1 INTRODUCTION

When developing some applications of formal languages it is necessary to understand proofs in their construct way. For this purpose, we demonstrate constructive alternative of the proof that a regulated pushdown automaton is equivalent to a Turing machine from [Med-00].

2 DEFINITIONS

Definition 2.1. A extended pushdown automaton (PDA for short) is a rewriting system, usually noted as a 7 -tuple $T=(Q, \Sigma, \Omega, \delta, s, \nabla, F)$, where Q is a finite set of states, Σ is a finite set of the input alphabet, Ω is a finite set of the stack alphabet, δ is a finite transition relation $((\Sigma \cup\{\varepsilon\}) \times Q \times \Omega) \rightarrow Q \times \Omega^{*}, s \in Q$ is the start state, $\nabla \in \Omega$ is the initial stack symbol and F $\subseteq Q$ is a set of final states.
A configuration of the pushdown automaton is a triple (q, w, γ), where $q \in Q$ is the current state, $w \in \Sigma^{*}$ are non read characters and $\gamma \in \Omega^{*}$ are symbols on the stack.

A computational step of pushdown automaton is a binary relation \vdash_{T} (or simply \vdash if no confusion can arise) defined as

$$
\left(q_{1}, a w, Z \gamma\right) \vdash_{T}\left(q_{2}, w, Y \gamma\right) \Leftrightarrow \delta\left(q_{1}, a, Z\right)=\left(q_{2}, Y\right) .
$$

In the previously defined manner, we extend \vdash to \vdash^{n}, where $n \geq 0, \vdash^{+}$and \vdash^{*}.
Let $T=(Q, \Sigma, \Omega, \delta, s, \nabla, F)$.
The language accepted by pushdown automaton T by final state is

$$
\mathcal{L}(T)=\left\{w \mid w \in \Sigma^{*},(s, w, \nabla) \vdash_{T}^{*}\left(q_{F}, \varepsilon, \gamma\right), q_{F} \in F, \gamma \in \Omega^{*}\right\}
$$

The language accepted by pushdown automaton T by empty pushdown is

$$
\mathcal{L}(T)=\left\{w \mid w \in \Sigma^{*},(s, w, \nabla) \vdash_{T}^{*}(q, \varepsilon, \varepsilon), q \in Q\right\}
$$

Definition 2.2. Let $M=(Q, \Sigma, \Omega, \delta, s, \nabla, F)$ be a PDA and let $x, x^{\prime}, x^{\prime \prime} \in \Omega^{*}, y, y^{\prime}, y^{\prime \prime} \in \Sigma^{*}, q, q^{\prime}$, $q^{\prime \prime} \in Q$, and $\nabla x q y \vdash \nabla x^{\prime} q^{\prime} y^{\prime} \vdash \nabla x^{\prime \prime} q^{\prime \prime} y^{\prime \prime}$. If $|x| \leq\left|x^{\prime}\right|$ and $\left|x^{\prime}\right|>\left|x^{\prime \prime}\right|$, then $\nabla x^{\prime} q^{\prime} y^{\prime} \vdash \nabla x^{\prime \prime} q^{\prime \prime} y^{\prime \prime}$ is a turn. If M makes no more than one turn during any sequence of moves starting from an initial configuration, then M is said to be one-turn (OTSA).

Definition 2.3. Let $G=(V, P)$ be a rewriting system. Let Ψ be an alphabet of rule labels such that $\operatorname{card}(\Psi)=\operatorname{card}(P)$, and ψ be a bijection from P to Ψ. For simplicity, to express that ψ maps a rule, $u \rightarrow v \in P$, to ρ, where $\rho \in \Psi$, we write $\rho . u \rightarrow v \in P$; in other words, $\rho . u \rightarrow v$ means $\psi(u \rightarrow v)=\rho$.
If $u \rightarrow v \in P$ and $x, y \in V^{*}$, then $x u y \Rightarrow x v y[u \rightarrow v]$ or simply $x u y \Rightarrow x v y[\rho]$. Let there exists a sequence $x_{0}, x_{1}, \ldots, x_{n} \in V^{*}$ for some $n \geq 1$ such that $x_{i-1} \Rightarrow x_{i}\left[\rho_{i}\right]$, where $\rho_{i} \in \Psi$, for $i=$ $1, \ldots, n$. Then G rewrites x_{0} to x_{n} in n steps according to $\rho_{1}, \ldots, \rho_{n}$, symbolically written as $x_{0} \Rightarrow^{n} x_{n}\left[\rho_{1} \ldots \rho_{n}\right]$.
Let Ξ be a control language over Ψ; that is $\Xi \in \Psi^{*}$.
Definition 2.4. Let $T=(Q, \Sigma, \Omega, \delta, s, \nabla, F)$ be a PDA and let Ψ be an alphabet of rule labels and let Ξ be a control language. A language generated by pushdown automaton T regulated by control language Ξ is

$$
\mathcal{L}(T, \Xi)=\left\{w \mid w \in \Sigma^{*},(s, w, \nabla) \vdash_{T}^{n}\left(q_{F}, \varepsilon, \gamma\right)\left[\rho_{1} \ldots \rho_{n}\right], \rho_{1}, \ldots, \rho_{n} \in \Xi, q_{F} \in F, \gamma \in \Omega^{*}\right\} .
$$

If it is useful to distinguish, T defines the following types of accepted languages:

1. $\mathcal{L}(T, \Xi, 1)=\mathcal{L}(T, \Xi)-$ the language accepted by the final state.
2. $\mathcal{L}(T, \Xi, 2)$ - the language accepted by an empty pushdown.
3. $\mathcal{L}(T, \Xi, 3)$ - the language accepted by the final state and an empty pushdown.

Definition 2.5. A type-0 grammar $G=(N, T, P, S)$ is in Penttonen normal form if every production $p \in P$ has one of these forms

1. $C B \rightarrow C D$
2. $D \rightarrow B C$
3. $C \rightarrow c$
4. $C \rightarrow \varepsilon$

3 RESULT

Theorem 3.1. Any recursive enumerable language L can be generated as $L=\mathcal{L}\left(M, L_{1}, 3\right)$ where M is an OTSA and L_{1} is a linear language.

Proof. Let L be any recursive enumerable language so that $L=\mathcal{L}(G)$ where $G=(N, T, P, S)$ is type-0 grammar in Penttonen normal form. Let $M=(Q, \Sigma, \Omega, \delta, s, \nabla, F)$ be an OTSA, where

1. $Q=\left\{q, q_{\text {in }}, q_{\text {out }}\right\}$,
2. $\Sigma=T$,
3. $\Omega=T \cup N \cup\{\#\} \cup\{\nabla\}$, where \# $\notin\{N \cup T\}$,
4. $s=q$,
5. $\nabla \in \Omega$ is the initial stack symbol
6. $F=\left\{q_{\text {out }}\right\}$.
7. $\delta=\delta^{\prime} \cup \delta_{\text {in }} \cup \delta_{\text {out }}$, where

$$
\begin{aligned}
& \delta^{\prime}=\{\langle a\rangle \cdot a q \rightarrow q a \mid \text { for every } a \in T\} \cup\left\{\langle \#\rangle \cdot q \rightarrow q_{\text {in }} \#\right\}, \\
& \left.\delta_{\text {in }}=\left\{\langle A\rangle . q_{\text {in }} \rightarrow q_{\text {in }} A \mid \text { for every } A \in T \cup N \cup\{\#\}\right\} \cup\{2\rangle . q_{\text {in }} \rightarrow q_{\text {out }}\right\}, \\
& \delta_{\text {out }}=\left\{\langle\bar{A}\rangle \cdot q_{\text {out }} A \rightarrow q_{\text {out }} \mid \text { for every } A \in T \cup N \cup\{\#\}\right\} .
\end{aligned}
$$

A control language L_{1}, which is linear, is defined by the following grammar $G_{1}=\left(N_{1}, T_{1}, P_{1}, S_{1}\right)$:

1. $N_{1}=\left\{S_{1}, K, M, M^{\prime}, O\right\}$,
2. $T_{1}=\{\langle A\rangle,\langle\bar{A}\rangle \mid A \in T \cup N \cup\{\#\}$ and $\langle A\rangle$ is label from $\Psi\} \cup\{\langle 2\rangle\}$,
3. $P_{1}=P_{a} \cup P_{\langle \#\rangle} \cup P_{b} \cup P_{c} \cup P_{d} \cup P_{\bar{c}} \cup P_{\bar{d}} \cup P_{e} \cup P_{f} \cup P_{g} \cup P_{h} \cup P_{\langle 2\rangle}$, where
$P_{a}=\left\{S_{1} \rightarrow\langle a\rangle S_{1} \mid\right.$ for every $\left.a \in T\right\}$,
$P_{\langle \#\rangle}=\left\{S_{1} \rightarrow\langle \#\rangle K\right\}$,
$P_{b}=\{K \rightarrow\langle A\rangle K\langle\bar{A}\rangle \mid$ for every $A \in T \cup N\}$,
$P_{c}=\{K \rightarrow\langle C\rangle M\langle\bar{C}\rangle \mid$ for every rule in the form $C B \rightarrow C D \in P\}$,
$P_{d}=\{M \rightarrow\langle B\rangle O\langle\bar{D}\rangle \mid$ for every rule in the form $C B \rightarrow C D \in P\}$,
$P_{\bar{C}}=\left\{K \rightarrow\langle D\rangle M^{\prime}\langle\bar{C}\rangle \mid\right.$ for every rule in the form $\left.D \rightarrow B C \in P\right\}$, $P_{\bar{d}}=\left\{M^{\prime} \rightarrow O\langle\bar{B}\rangle \mid\right.$ for every rule in the form $\left.D \rightarrow B C \in P\right\}$,
$P_{e}=\{K \rightarrow\langle C\rangle O\langle\bar{c}\rangle \mid$ for every rule in the form $C \rightarrow c \in P\}$,
$P_{f}=\{K \rightarrow\langle C\rangle O \mid$ for every rule in the form $C \rightarrow \varepsilon \in P\}$,
$P_{g}=\{O \rightarrow\langle A\rangle O\langle\bar{A}\rangle \mid$ for every $A \in T \cup N\}$,
$P_{h}=\{O \rightarrow\langle \#\rangle K\langle\overline{\#}\rangle\}$,
$P_{\langle 2\rangle}=\{K \rightarrow\langle 2\rangle\langle\overline{\#}\rangle\langle\bar{S}\rangle\}$.
Now, we prove two standard inclusions. First, $L \subseteq \mathcal{L}\left(M, L_{1}\right)$. For every $w \in L$ there exists some successful derivation $S=w_{0} \Rightarrow w_{1} \Rightarrow \ldots \Rightarrow w_{n}=w$ in L. We will construct the control string R as follows (for the sake of simplicity we omit \langle and \rangle if no confusion can arise)

$$
R=w \# w_{n-1} \# \ldots \# w_{1} \# S \#\langle 2\rangle \# S \# w_{1}^{R} \# \ldots \# w_{n-1}^{R} \# w^{R} .
$$

It is easy to verify, that OTSA M under regulation of R reaches the final state and empties its pushdown (because $R=R^{\prime}\langle 2\rangle \overline{\operatorname{rev}\left(R^{\prime}\right)}$).
We need to prove that $R \in \mathcal{L}\left(G_{1}\right)$. For every R_{i} :

$$
\begin{gathered}
R_{0}=w \# K \\
R_{1}=w \# w_{n-1} \# K \overline{\# w^{R}} . \\
\vdots \\
R_{m}=w \# w_{n-1} \# \ldots \# w_{n-m} K \overline{\# w_{n-(m-1)}^{R} \# \ldots \# w_{n-1}^{R} \# w^{R}} .
\end{gathered}
$$

holds $S_{1} \Rightarrow^{*} R_{i}$ by induction on i.
$i=0: S_{1} \Rightarrow^{|w|} w S_{1} \Rightarrow w \# K$, hence $w \# K \in \mathcal{L}\left(G_{1}\right)$.
$i=k$:

$$
R_{k}=w \# w_{n-1} \# \ldots \# w_{n-k} K \overline{\# w_{n-(k-1)}^{R} \# \ldots \# w_{n-1}^{R} \# w^{R} .}
$$

That is, $K \Rightarrow^{*} w_{n-(k+1)} O \overline{w_{n-k}^{R}} \Rightarrow w_{n-(k+1)} \# K \overline{\# w_{n-k}^{R}}$ by using rules from P_{b} to elements not affected in the rewriting of w_{n-k} to w_{n-k+1}. Then one or two rules from sets $P_{c}, P_{d}, P_{\bar{c}}, P_{\bar{d}}, P_{e}$ and P_{f} are used according to used rule from P. The rest rules are taken from P_{g} and finally one rule from P_{h} rewrites nonterminal O to K.

$$
R_{k} \Rightarrow^{*} w \# w_{n-1} \# \ldots \# w_{n-k} \# w_{n-(k+1)} \# K \overline{\# w_{n-k}^{R}} \# w_{n-(k-1)}^{R} \# \ldots \# w_{n-1}^{R} \# w^{R}=R_{k+1} .
$$

Let us see a short example. For the sake of simplicity we again omit \langle and \rangle if no confusion can arise. The derivation $S \Rightarrow A X \Rightarrow A B C \Rightarrow a B C \Rightarrow a D C \Rightarrow a D c \Rightarrow a b c$ in grammar $G=(\{S, A, B, C, X\},\{a, b, c\}, S,\{S \rightarrow A X, X \rightarrow B C, B C \rightarrow D C, A \rightarrow a, D \rightarrow b, C \rightarrow c\})$ results in $a b c \# a D c \# a D C \# a B C \# A B C \# A X \# S \#\langle 2\rangle \# S \# X A \# C B A \# C B a \# C D a \# c D a \# c b a$ as the control string.

The underlying OTSA under such derivation string operates as follows:

```
a.aq->qa:(abc,q,\nabla)\vdash(bc,q,a)
b.bq->qb:(bc,q,a)\vdash(c,q,ab)
c.cq->qc:(c,q,ab)\vdash(\varepsilon,q,abc)
#.q->\mp@subsup{q}{in}{}#:(\varepsilon,q,abc)\vdash(\varepsilon,\mp@subsup{q}{in}{},abc#)
a.q.q}->\mp@subsup{q}{in}{}a:(\varepsilon,\mp@subsup{q}{in}{},abc#)\vdash(\varepsilon,\mp@subsup{q}{in}{},abc#a
D.q.qu }->\mp@subsup{q}{in}{}D:(\varepsilon,\mp@subsup{q}{in}{},abc#a)\vdash(\varepsilon,\mp@subsup{q}{in}{},abc#aD
c.q}\mp@subsup{q}{in}{}->\mp@subsup{q}{in}{}c:(\varepsilon,\mp@subsup{q}{in}{},abc#aD)\vdash(\varepsilon,\mp@subsup{q}{in}{},abc#aDc
#.qin}->\mp@subsup{q}{in}{}#:(\varepsilon,\mp@subsup{q}{in}{},abc#aDc)\vdash(\varepsilon,\mp@subsup{q}{in}{},abc#aDc#
\vdots
S.q.in }->\mp@subsup{q}{in}{}S:(\varepsilon,\mp@subsup{q}{in}{},abc#aDc#aDC#aBC#ABC#AX#)
\vdash(\varepsilon,\mp@subsup{q}{in}{},abc#aDc#aDC#aBC#ABC#AX#S)
#.q.q}->\mp@subsup{q}{in}{}# : (\varepsilon,\mp@subsup{q}{in}{},abc#aDc#aDC#aBC#ABC#AX#S)
\vdash (\varepsilon, qin ,abc#aDc#aDC#aBC#ABC#AX#S#)
<2\rangle.q.qin -> q out# : (\varepsilon,\mp@subsup{q}{in}{},abc#aDc#aDC#aBC#ABC#AX#S#)\vdash
\vdash (\varepsilon,qout,abc#aDc#aDC#aBC#ABC#AX#S#)
#.q}\mp@subsup{q}{\mathrm{ out # }}{|}\mp@subsup{q}{\mathrm{ out }}{}:(\varepsilon,\mp@subsup{q}{\mathrm{ out }}{},abc#aDc#aDC#aBC#ABC#AX#S#)
\vdash(\varepsilon,\mp@subsup{q}{out}{*},abc#aDc#aDC#aBC#ABC#AX#S)
```



```
\vdash(\varepsilon,q\mp@code{out ,abc#aDc#aDC#aBC#ABC#AX#)}
\vdots
#.q.qut# -> q quut : (\varepsilon, qout,abc#)\vdash(\varepsilon,\mp@subsup{q}{out}{*},abc)
c}.\mp@subsup{q}{\mathrm{ out }}{}c->\mp@subsup{q}{\mathrm{ out }}{}:(\varepsilon,\mp@subsup{q}{\mathrm{ out }}{},abc)\vdash(\varepsilon,\mp@subsup{q}{\mathrm{ out }}{},ab
b}.\mp@subsup{q}{\mathrm{ out }}{}b->\mp@subsup{q}{\mathrm{ out }}{}:(\varepsilon,\mp@subsup{q}{\mathrm{ out }}{},ab)\vdash(\varepsilon,\mp@subsup{q}{\mathrm{ out }}{},a
a}.\mp@subsup{q}{\mathrm{ out }}{}a->\mp@subsup{q}{\mathrm{ out }}{}:(\varepsilon,\mp@subsup{q}{\mathrm{ out }}{},a)\vdash(\varepsilon,\mp@subsup{q}{\mathrm{ out }}{},\nabla
```

so OTSA is in final state and has empty stack.

The derivation of control string in control language is

$$
\begin{aligned}
& S_{1} \Rightarrow a S_{1} \Rightarrow a b S_{1} \Rightarrow a b c S_{1} \Rightarrow a b c \# K \Rightarrow a b c \# a K \bar{a} \stackrel{D \rightarrow b}{\Longrightarrow} a b c \# a D O \overline{b a} \Rightarrow \\
& \Rightarrow a b c \# a D c O \overline{c b a} \Rightarrow a b c \# a D c \# K \# c b a \Rightarrow \ldots \Rightarrow \\
\Rightarrow & a b c \# a D c \# a D C \# a B C \# A B C \# A X \# S \# K \overline{\# X A \# C B A \# C B a \# C D a \# c D a \# c b a} \Rightarrow \\
\Rightarrow & a b c \# a D c \# a D C \# a B C \# A B C \# A X \# S \#\langle 2\rangle \# S \# X A \# C B A \# C B a \# C D a \# c D a \# c b a
\end{aligned} .
$$

The second inclusion is $\mathcal{L}\left(M, L_{1}\right) \subseteq L$. Let us suppose that the word $w_{m}=x_{1} x_{2} \ldots x_{p} \in \mathcal{L}\left(M, L_{1}\right)$. We will prove the following theorem by induction on n :
For any integer n, the word $w_{m-n}, 1 \leq n \leq m$ in the control string R_{n}

$$
\begin{gathered}
R_{0}=w_{m} \# K \\
R_{1}=w_{m} \# w_{m-1} \# K \overline{\# w_{m}^{R}} \\
\vdots \\
R_{n}=w_{m} \# w_{m-1} \# \ldots \# w_{m-n} \# K \overline{\# w_{m-(n-1)}^{R} \# \ldots \# w_{m-1}^{R} \# w_{m}^{R}}
\end{gathered}
$$

can be derived from w_{m-n} to w_{m} in n steps in G, hence $w_{m-n} \Rightarrow^{n} w_{m}$ in G.
$n=0: w_{m} \Rightarrow^{0} w_{m}$.
$n=k:$

$$
R_{k}=w_{m} \ldots \# w_{m-k} \# K \overline{\# w_{m-(k-1)}^{R} \# \ldots \# w_{m}^{R}}
$$

$w_{m-k}=y_{1} y_{2} \ldots y_{q}$. As M is OTSA, the sequence of pushed symbols onto the stack will be popped in reverse order. Hence,

$$
K \Rightarrow^{*} z_{1} z_{2} \ldots z_{r} \# K \overline{\# y_{q} \ldots y_{2} y_{1}}
$$

where $z_{i} \in(N \cup T)$ and there exists index i such as $y_{1}=z_{1}, \ldots, y_{i}=z_{i}$ and

$$
K \Rightarrow^{i} y_{1} y_{2} \ldots y_{i} K \overline{y_{i} \ldots y_{2} y_{1}},
$$

according to i applications of rules from P_{b}. Now there are 4 possible rules to apply $P_{c}, P_{\bar{c}}, P_{e}$, and P_{f}. The next step has to generate $\overline{y_{i+1}}$ on the right side of K.

1. $P_{c}: K \Rightarrow C M \bar{C} \Rightarrow C B O \overline{D C} \Leftrightarrow C B \rightarrow C D \in P$ and $y_{i+2}=D$ and $y_{i+1}=C$.
2. $P_{\bar{c}}: K \Rightarrow D M^{\prime} \bar{C} \Rightarrow D O \overline{B C} \Leftrightarrow D \rightarrow B C \in P$ and $y_{i+2}=B$ and $y_{i+1}=C$.
3. $P_{e}: K \Rightarrow C O \bar{c} \Leftrightarrow C \rightarrow c \in P$ and $y_{i+1}=c$.
4. $P_{f}: K \Rightarrow C O \Leftrightarrow C \rightarrow \varepsilon \in P$.

Now there are two possible rules to apply. From P_{g} and P_{h}. As there are still some elements of y_{k} on the right side of O, we have to use rules from P_{g} until there is complete $\overline{y_{q} \ldots y_{2} y_{1}}$ generated on the right side of O. Consequently, there exists index j such that $y_{j}=z_{k}, \ldots, y_{q}=z_{r}$. Then, the last rule from P_{h} generates \# and $\overline{\#}$ on both sides of O and O rewrites to K. Then,

$$
R_{k} \Rightarrow^{*} w_{m} \# \ldots \# w_{m-k} \# w_{m-(k+1)} K \overline{\# w_{m-k}^{R} \# w_{m-(k-1)}^{R} \# \ldots \# w_{m}^{R}}=R_{k+1}
$$

and $w_{m-k} \Rightarrow w_{m-(k+1)}$ in G.
So, the complete control string will be

$$
R=w_{n} \# w_{n-1} \# \ldots \# w_{1} \# S \#\langle 2\rangle \# S \# w_{1}^{R} \# \ldots \# w_{n-1}^{R} \# w_{n}^{R}
$$

and there exists the derivation $S \Rightarrow w_{1} \Rightarrow \ldots \Rightarrow w_{n-1} \Rightarrow w_{n}$ in G and $w_{n} \in L=\mathcal{L}(G)$.

REFERENCES

[Med-00] Meduna, A., Kolář, D.: Regulated Pushdown Automata, Acta Cybernetica, Vol. 14, 2000. 653-664.

