
REGULATED PUSHDOWN AUTOMATA REVISITED

Lukáš Rychnovský
Doctoral Degree Programme (3), FIT BUT

E-mail: rychnov@fit.vutbr.cz

Supervised by: Alexander Meduna
E-mail: meduna@fit.vutbr.cz

ABSTRACT

This paper demonstrates the alternative proof for the theorem of equivalence between regulated
pushdown automata and recursive enumerable languages as shown in [Med–00].

1 INTRODUCTION

When developing some applications of formal languages it is necessary to understand proofs in
their construct way. For this purpose, we demonstrate constructive alternative of the proof that
a regulated pushdown automaton is equivalent to a Turing machine from [Med–00].

2 DEFINITIONS

Definition 2.1. A extended pushdown automaton (PDA for short) is a rewriting system, usually
noted as a 7-tuple T = (Q,Σ,Ω,δ,s,∇,F), where Q is a finite set of states, Σ is a finite set
of the input alphabet, Ω is a finite set of the stack alphabet, δ is a finite transition relation
((Σ∪{ε})×Q×Ω)→ Q×Ω∗, s ∈ Q is the start state, ∇ ∈Ω is the initial stack symbol and F
⊆ Q is a set of final states.

A configuration of the pushdown automaton is a triple (q,w,γ), where q ∈Q is the current state,
w ∈ Σ∗ are non read characters and γ ∈Ω∗ are symbols on the stack.

A computational step of pushdown automaton is a binary relation `T (or simply ` if no confu-
sion can arise) defined as

(q1,aw,Zγ) `T (q2,w,Y γ)⇔ δ(q1,a,Z) = (q2,Y).

In the previously defined manner, we extend ` to `n, where n≥ 0, `+ and `∗.

Let T = (Q,Σ,Ω,δ,s,∇,F).
The language accepted by pushdown automaton T by final state is

L(T) = {w | w ∈ Σ
∗,(s,w,∇) `∗T (qF ,ε,γ),qF ∈ F,γ ∈Ω

∗}

The language accepted by pushdown automaton T by empty pushdown is

L(T) = {w | w ∈ Σ
∗,(s,w,∇) `∗T (q,ε,ε),q ∈ Q}

Definition 2.2. Let M = (Q,Σ,Ω,δ,s,∇,F) be a PDA and let x,x′,x′′ ∈ Ω∗,y,y′,y′′ ∈ Σ∗, q, q′,
q′′ ∈ Q, and ∇xqy ` ∇x′q′y′ ` ∇x′′q′′y′′. If |x| ≤ |x′| and |x′|> |x′′|, then ∇x′q′y′ ` ∇x′′q′′y′′ is a
turn. If M makes no more than one turn during any sequence of moves starting from an initial
configuration, then M is said to be one-turn (OTSA).

Definition 2.3. Let G = (V,P) be a rewriting system. Let Ψ be an alphabet of rule labels such
that card(Ψ) = card(P), and ψ be a bijection from P to Ψ. For simplicity, to express that ψ maps
a rule, u → v ∈ P, to ρ, where ρ ∈ Ψ, we write ρ.u → v ∈ P; in other words, ρ.u → v means
ψ(u→ v) = ρ.

If u → v ∈ P and x,y ∈ V ∗, then xuy ⇒ xvy [u → v] or simply xuy ⇒ xvy [ρ]. Let there exists
a sequence x0,x1, . . . ,xn ∈ V ∗ for some n ≥ 1 such that xi−1 ⇒ xi [ρi], where ρi ∈ Ψ, for i =
1, . . . ,n. Then G rewrites x0 to xn in n steps according to ρ1, . . . ,ρn, symbolically written as
x0 ⇒n xn [ρ1 . . .ρn].

Let Ξ be a control language over Ψ; that is Ξ ∈Ψ∗.

Definition 2.4. Let T = (Q,Σ,Ω,δ,s,∇,F) be a PDA and let Ψ be an alphabet of rule labels
and let Ξ be a control language. A language generated by pushdown automaton T regulated by
control language Ξ is

L(T,Ξ) = {w | w ∈ Σ
∗,(s,w,∇) `n

T (qF ,ε,γ) [ρ1 . . .ρn],ρ1, . . . ,ρn ∈ Ξ,qF ∈ F,γ ∈Ω
∗}.

If it is useful to distinguish, T defines the following types of accepted languages:
1. L(T,Ξ,1) = L(T,Ξ) – the language accepted by the final state.
2. L(T,Ξ,2) – the language accepted by an empty pushdown.
3. L(T,Ξ,3) – the language accepted by the final state and an empty pushdown.

Definition 2.5. A type-0 grammar G = (N,T,P,S) is in Penttonen normal form if every produc-
tion p ∈ P has one of these forms

1. CB→CD
2. D→ BC
3. C → c
4. C → ε

3 RESULT

Theorem 3.1. Any recursive enumerable language L can be generated as L = L(M,L1,3)
where M is an OTSA and L1 is a linear language.

Proof. Let L be any recursive enumerable language so that L = L(G) where G = (N,T,P,S) is
type-0 grammar in Penttonen normal form. Let M = (Q,Σ,Ω,δ,s,∇,F) be an OTSA, where

1. Q = {q,qin,qout},

2. Σ = T ,

3. Ω = T ∪N∪{#}∪{∇}, where # /∈ {N∪T},

4. s = q,

5. ∇ ∈Ω is the initial stack symbol

6. F = {qout}.

7. δ = δ′∪δin∪δout , where
δ′ = {〈a〉.aq→ qa | for every a ∈ T}∪{〈#〉.q→ qin#},
δin = {〈A〉.qin → qinA | for every A ∈ T ∪N∪{#}}∪{〈2〉.qin → qout},
δout = {〈A〉.qoutA→ qout | for every A ∈ T ∪N∪{#}}.

A control language L1, which is linear, is defined by the following grammar G1 =(N1,T1,P1,S1):

1. N1 = {S1,K,M,M′,O},

2. T1 = {〈A〉,〈A〉 |A ∈ T ∪N∪{#} and 〈A〉 is label from Ψ}∪{〈2〉},

3. P1 = Pa∪P〈#〉∪Pb∪Pc∪Pd ∪Pc∪Pd ∪Pe∪Pf ∪Pg∪Ph∪P〈2〉, where
Pa = {S1 → 〈a〉S1 | for every a ∈ T},
P〈#〉 = {S1 → 〈#〉K},
Pb = {K → 〈A〉K〈A〉 | for every A ∈ T ∪N},
Pc = {K → 〈C〉M〈C〉 | for every rule in the form CB→CD ∈ P},
Pd = {M → 〈B〉O〈D〉 | for every rule in the form CB→CD ∈ P},
Pc = {K → 〈D〉M′〈C〉 | for every rule in the form D→ BC ∈ P},
Pd = {M′→ O〈B〉 | for every rule in the form D→ BC ∈ P},
Pe = {K → 〈C〉O〈c〉 | for every rule in the form C → c ∈ P},
Pf = {K → 〈C〉O | for every rule in the form C → ε ∈ P},
Pg = {O→ 〈A〉O〈A〉 | for every A ∈ T ∪N},
Ph = {O→ 〈#〉K〈#〉},
P〈2〉 = {K → 〈2〉〈#〉〈S〉}.

Now, we prove two standard inclusions. First, L⊆ L(M,L1). For every w ∈ L there exists some
successful derivation S = w0 ⇒ w1 ⇒ . . .⇒ wn = w in L. We will construct the control string
R as follows (for the sake of simplicity we omit 〈 and 〉 if no confusion can arise)

R = w#wn−1# . . .#w1#S#〈2〉#S#wR
1 # . . .#wR

n−1#wR.

It is easy to verify, that OTSA M under regulation of R reaches the final state and empties its
pushdown (because R = R′〈2〉rev(R′)).

We need to prove that R ∈ L(G1). For every Ri:

R0 = w# K

R1 = w#wn−1# K #wR.

...

Rm = w#wn−1# . . .#wn−m K #wR
n−(m−1)# . . .#wR

n−1#wR.

holds S1 ⇒∗ Ri by induction on i.
i = 0: S1 ⇒|w| wS1 ⇒ w# K, hence w#K ∈ L(G1).
i = k:

Rk = w#wn−1# . . .#wn−k K #wR
n−(k−1)# . . .#wR

n−1#wR.

That is, K ⇒∗ wn−(k+1) O wR
n−k ⇒ wn−(k+1)# K #wR

n−k by using rules from Pb to elements not
affected in the rewriting of wn−k to wn−k+1. Then one or two rules from sets Pc,Pd,Pc,Pd,Pe
and Pf are used according to used rule from P. The rest rules are taken from Pg and finally one
rule from Ph rewrites nonterminal O to K.

Rk ⇒∗ w#wn−1# . . .#wn−k#wn−(k+1)# K #wR
n−k#wR

n−(k−1)# . . .#wR
n−1#wR = Rk+1.

Let us see a short example. For the sake of simplicity we again omit 〈 and 〉 if no confu-
sion can arise. The derivation S ⇒ AX ⇒ ABC ⇒ aBC ⇒ aDC ⇒ aDc ⇒ abc in grammar
G = ({S,A,B,C,X},{a,b,c},S,{S→ AX ,X → BC,BC→DC,A→ a,D→ b,C→ c}) results in
abc#aDc#aDC#aBC#ABC#AX#S#〈2〉#S#XA#CBA#CBa#CDa#cDa#cba as the control string.

The underlying OTSA under such derivation string operates as follows:
a.aq→ qa : (abc,q,∇) ` (bc,q,a)
b.bq→ qb : (bc,q,a) ` (c,q,ab)
c.cq→ qc : (c,q,ab) ` (ε,q,abc)
#.q→ qin# : (ε,q,abc) ` (ε,qin,abc#)
a.qin → qina : (ε,qin,abc#) ` (ε,qin,abc#a)
D.qin → qinD : (ε,qin,abc#a) ` (ε,qin,abc#aD)
c.qin → qinc : (ε,qin,abc#aD) ` (ε,qin,abc#aDc)
#.qin → qin# : (ε,qin,abc#aDc) ` (ε,qin,abc#aDc#)
...
S.qin → qinS : (ε,qin,abc#aDc#aDC#aBC#ABC#AX#) `
` (ε,qin,abc#aDc#aDC#aBC#ABC#AX#S)
#.qin → qin# : (ε,qin,abc#aDc#aDC#aBC#ABC#AX#S) `
` (ε,qin,abc#aDc#aDC#aBC#ABC#AX#S#)
〈2〉.qin → qout# : (ε,qin,abc#aDc#aDC#aBC#ABC#AX#S#) `
` (ε,qout ,abc#aDc#aDC#aBC#ABC#AX#S#)
#.qout#→ qout : (ε,qout ,abc#aDc#aDC#aBC#ABC#AX#S#) `
` (ε,qout ,abc#aDc#aDC#aBC#ABC#AX#S)
S.qoutS → qout : (ε,qout ,abc#aDc#aDC#aBC#ABC#AX#S) `
` (ε,qout ,abc#aDc#aDC#aBC#ABC#AX#)
...
#.qout#→ qout : (ε,qout ,abc#) ` (ε,qout ,abc)
c.qoutc→ qout : (ε,qout ,abc) ` (ε,qout ,ab)
b.qoutb→ qout : (ε,qout ,ab) ` (ε,qout ,a)
a.qouta→ qout : (ε,qout ,a) ` (ε,qout ,∇)
so OTSA is in final state and has empty stack.

The derivation of control string in control language is

S1 ⇒ aS1 ⇒ abS1 ⇒ abcS1 ⇒ abc#K ⇒ abc#aKa D→b=⇒ abc#aD O ba⇒

⇒ abc#aDc O cba⇒ abc#aDc# K #cba⇒ . . .⇒

⇒ abc#aDc#aDC#aBC#ABC#AX#S# K #XA#CBA#CBa#CDa#cDa#cba⇒

⇒ abc#aDc#aDC#aBC#ABC#AX#S#〈2〉#S#XA#CBA#CBa#CDa#cDa#cba.

The second inclusion is L(M,L1)⊆L. Let us suppose that the word wm = x1x2 . . .xp ∈L(M,L1).
We will prove the following theorem by induction on n:
For any integer n, the word wm−n,1≤ n≤ m in the control string Rn

R0 = wm# K

R1 = wm#wm−1# K #wR
m

...

Rn = wm#wm−1# . . .#wm−n# K #wR
m−(n−1)# . . .#wR

m−1#wR
m

can be derived from wm−n to wm in n steps in G, hence wm−n ⇒n wm in G.
n = 0: wm ⇒0 wm.
n = k:

Rk = wm . . .#wm−k# K #wR
m−(k−1)# . . .#wR

m

wm−k = y1y2 . . .yq. As M is OTSA, the sequence of pushed symbols onto the stack will be
popped in reverse order. Hence,

K ⇒∗ z1z2 . . .zr# K #yq . . .y2y1

where zi ∈ (N∪T) and there exists index i such as y1 = z1, . . . ,yi = zi and

K ⇒i y1y2 . . .yi K yi . . .y2y1,

according to i applications of rules from Pb. Now there are 4 possible rules to apply Pc,Pc,Pe,
and Pf . The next step has to generate yi+1 on the right side of K.

1. Pc: K ⇒C M C ⇒CB O DC ⇔CB→CD ∈ P and yi+2 = D and yi+1 = C.

2. Pc: K ⇒ D M′ C ⇒ D O BC ⇔ D→ BC ∈ P and yi+2 = B and yi+1 = C.

3. Pe: K ⇒C O c⇔C → c ∈ P and yi+1 = c.

4. Pf : K ⇒C O ⇔C → ε ∈ P.

Now there are two possible rules to apply. From Pg and Ph. As there are still some elements of yk
on the right side of O, we have to use rules from Pg until there is complete yq . . .y2y1 generated
on the right side of O. Consequently, there exists index j such that y j = zk, . . . ,yq = zr. Then,
the last rule from Ph generates # and # on both sides of O and O rewrites to K. Then,

Rk ⇒∗ wm# . . .#wm−k#wm−(k+1) K #wR
m−k#wR

m−(k−1)# . . .#wR
m = Rk+1

and wm−k ⇒ wm−(k+1) in G.

So, the complete control string will be

R = wn#wn−1# . . .#w1#S#〈2〉#S#wR
1 # . . .#wR

n−1#wR
n

and there exists the derivation S ⇒ w1 ⇒ . . .⇒ wn−1 ⇒ wn in G and wn ∈ L = L(G).

REFERENCES

[Med–00] Meduna, A., Kolář, D.: Regulated Pushdown Automata, Acta Cybernetica, Vol. 14,
2000. 653–664.

